Infectious complications following transrectal ultrasound (TRUS) - guided prostate biopsy:
New challenges in the era of antimicrobial resistance

ASID Gram-negative ‘Superbugs’ meeting, 2013

Dr Deborah Williamson MRCP FRCPA
Clinical Microbiologist, Auckland District Health Board, New Zealand and Institute of Environmental Science and Research, Wellington, New Zealand

HRC PhD student, University of Auckland, New Zealand
Outline

• Nature and incidence of post-TRUS biopsy infectious complications
• Potential risk factors for post-TRUS biopsy infections
• Pathophysiology and causative organisms
• Antimicrobial prophylaxis
• Pre-biopsy screening
Transrectal ultrasound guided prostate biopsy

- Standard technique to obtain tissue for histological diagnosis of prostate carcinoma
- Approximately one million biopsies performed annually in the United States
- Increasing rates of hospitalisation due to infectious complications post-biopsy \(^1, 2\)

\(^1\) Loeb S, et al. *J Urol* 2011; 186:1830–4

The national burden of infections after prostate biopsy in England and Wales: a wake-up call for better prevention

Deepak Batura¹* and Guduru Gopal Rao²

¹Department of Urology, Northwick Park Hospital, Watford Road, London HA1 3UJ, UK; ²Department of Microbiology, Northwick Park Hospital, Watford Road, London HA1 3UJ, UK

Infectious Complications Following Transrectal Ultrasound–Guided Prostate Biopsy: New Challenges in the Era of Multidrug-Resistant Escherichia coli

Deborah A. Williamson,¹,² Lucinda K. Barrett,³ Benjamin A. Rogers,³ Joshua T. Freeman,² Paul Hadway,⁴ and David L. Paterson³

¹Faculty of Medical and Health Sciences, University of Auckland, and ²Department of Clinical Microbiology, Auckland District Health Board, New Zealand; ³The University of Queensland, UQ Centre for Clinical Research, Brisbane, and ⁴Department of Urology, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia

Nature and incidence of infectious complications

• Clinical spectrum of infectious complications, ranging from urinary tract infection through to severe sepsis

• Wide variability in reported rates due to differences in biopsy technique; antimicrobial prophylaxis, and patient follow-up

• Reported incidence: UTI is 2-6%; severe sepsis 0.2-2% ¹

• True incidence likely to be underestimated as majority of infections managed in community ²

² Loeb et al. Eur Urol 2012; 61: 1110-4
Causative pathogens and antimicrobial resistance profiles

- Commonest pathogen in post-TRUS biopsy infection is *Escherichia coli* ¹
- Antimicrobial resistant *E. coli* an increasing problem:
 - Fluoroquinolone resistant *E. coli* (11-22% men pre-biopsy) ²
 - ESBL-producing *E. coli*
- Why are resistant *E. coli* infections increasing in the setting of TRUS biopsy??
 - Increasing community reservoir
 - Increasing global spread of clones associated with resistance, most notably ST131 *E. coli*

¹ Williamson DA et al. *Clin Infect Dis* 2013; 57: 267-74
² Duplessis CA et al. *Urology* 2012; 79: 556-563
Predicting risk factors for post-biopsy infections

- No consistent data regarding:
 - Patient-specific risk factors \(^1\)
 - Pre-existing urological pathology \(^2\)
 - Procedural risk factors

- Risk factors for resistant *E. coli* infection post-biopsy:
 - Receipt of fluoroquinolone antibiotic \(^3\)
 - International travel \(^3, 4\)

\(^2\) Simsir et al. *Urol Int* 2010; 84: 395-9
\(^3\) Patel et al. *BJU Int* 2012; 109: 1781-5
Five patients (5/47; 11%) had an ESBL-producing *E. coli* bacteraemia isolated post-TRUS biopsy between 2007 - 2010.

Four of five had travelled to either India or South-East Asia in preceding month.

- Areas of high endemicity for resistant organisms

- All CTX-M-15 ESBLs (most globally prevalent ESBL type)

TABLE 1 Clinical and microbiological characteristics of four patients with extended-spectrum β-lactamase-producing *Escherichia coli* bacteraemia

<table>
<thead>
<tr>
<th>Patient</th>
<th>Ethnicity</th>
<th>Geographic region of travel</th>
<th>ESBL-type</th>
<th>Antimicrobial resistance profile of E. coli isolate</th>
<th>Empiric treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NZE</td>
<td>South-East Asia</td>
<td>CTX-M-15</td>
<td>AMO; AUG; CTO; COT; GEN; CIP AMK; ERT; MER</td>
<td>AUG; GEN</td>
</tr>
<tr>
<td>2</td>
<td>NZE</td>
<td>South-East Asia</td>
<td>CTX-M-15</td>
<td>AMO; AUG; CTO; COT; GEN; CIP AMK; ERT; MER</td>
<td>AUG; GEN</td>
</tr>
<tr>
<td>3</td>
<td>NZE</td>
<td>Indian subcontinent</td>
<td>CTX-M-15</td>
<td>AMO; AUG; CTO; COT; GEN; CIP GEN; AMK; ERT; MER</td>
<td>AUG; GEN</td>
</tr>
<tr>
<td>4</td>
<td>NZE</td>
<td>Indian subcontinent</td>
<td>CTX-M-15</td>
<td>AMO; AUG; CTO; COT; GEN; CIP AMK; ERT; MER</td>
<td>AMO; GEN</td>
</tr>
</tbody>
</table>

NZE, New Zealand European; AMO, amoxycillin; AUG, amoxycillin clavulanate; CTO, ceftriaxone; COT, trimethoprim/sulphamethoxazole; GEN, gentamicin; CIP, ciprofloxacine; AMK, amikacin; ERT, ertapenem; MER, meropenem.

Role of antibiotic prophylaxis pre-TRUS biopsy

Antibiotic prophylaxis for transrectal prostate biopsy (Review)

Zani EL, Clark OAC, Rodrigues Netto Jr N

Authors’ conclusions

Antibiotic prophylaxis is effective in preventing infectious complications following TRPB. There is no definitive data to confirm that antibiotics for long-course (3 days) are superior to short-course treatments (1 day), or that multiple-dose treatment is superior to single-dose.

Zani EL et al. Cochrane Database Syst Rev. 2011
Escherichia coli Bloodstream Infection After Transrectal Ultrasound–Guided Prostate Biopsy: Implications of Fluoroquinolone-Resistant Sequence Type 131 as a Major Causative Pathogen

Deborah A. Williamson,¹ Sally A. Roberts,¹ David L. Paterson,³ Hanna Sidjabat,³ Anna Silvey,³ Jonathan Masters,² Michael Rice,² and Joshua T. Freeman¹

¹Department of Microbiology, and ²Department of Urology, Auckland District Health Board, New Zealand; and ³University of Queensland Centre for Clinical Research, Brisbane, Australia
TRUS biopsy and ST131 *E. coli*

<table>
<thead>
<tr>
<th>Source</th>
<th>Patients, No. (%) (n = 258)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary tract</td>
<td>96 (37.2)</td>
</tr>
<tr>
<td>Intra-abdominal</td>
<td>83 (32.2)</td>
</tr>
<tr>
<td>Cholangitis</td>
<td>58 (22.5)</td>
</tr>
<tr>
<td>Diverticulitis</td>
<td>10 (3.8)</td>
</tr>
<tr>
<td>Perforated appendix</td>
<td>9 (3.5)</td>
</tr>
<tr>
<td>Perianal abscess</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td>Post TRUS biopsy</td>
<td>47 (18.2)</td>
</tr>
<tr>
<td>Lower respiratory tract</td>
<td>19 (7.4)</td>
</tr>
<tr>
<td>Skin and soft-tissue infection</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td>Unknown</td>
<td>10 (3.8)</td>
</tr>
</tbody>
</table>

Abbreviation: TRUS, transrectal ultrasound-guided.
In 35/47 patients (74.5%) the isolate was resistant to one (18/47; 38.3%) or both (17/47; 36.2%) agents used for empiric therapy

Table 3. Comparison of Antimicrobial Resistance in *Escherichia coli* Isolates From Men After Transrectal Ultrasound–Guided Biopsy or Men Admitted With *E. coli* Bacteremia Secondary to Other Causes

<table>
<thead>
<tr>
<th>Antimicrobial Resistance</th>
<th>Isolates, No. (%)</th>
<th>TRUS Biopsy (n = 47)</th>
<th>No TRUS Biopsy (n = 211)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxycillin</td>
<td></td>
<td>44 (94)</td>
<td>111 (53)</td>
<td><.001</td>
</tr>
<tr>
<td>Amoxycillin-clavulanate</td>
<td></td>
<td>16 (34)</td>
<td>41 (19)</td>
<td>.03</td>
</tr>
<tr>
<td>Ticarcillin-clavulanate</td>
<td></td>
<td>19 (40)</td>
<td>54 (26)</td>
<td>.049</td>
</tr>
<tr>
<td>Cephalothin</td>
<td></td>
<td>28 (60)</td>
<td>86 (41)</td>
<td>.02</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td></td>
<td>7 (15)</td>
<td>16 (8)</td>
<td>.15</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td></td>
<td>5 (11)</td>
<td>11 (5)</td>
<td>.18</td>
</tr>
<tr>
<td>Meropenem</td>
<td></td>
<td>0</td>
<td>0</td>
<td>>1</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td>29 (62)</td>
<td>30 (14)</td>
<td><.001</td>
</tr>
<tr>
<td>Gentamicin</td>
<td></td>
<td>20 (43)</td>
<td>14 (7)</td>
<td><.001</td>
</tr>
<tr>
<td>Amikacin</td>
<td></td>
<td>0</td>
<td>0</td>
<td>>1</td>
</tr>
<tr>
<td>Trimethoprim-sulphamethoxazole</td>
<td></td>
<td>28 (60)</td>
<td>55 (26)</td>
<td><.001</td>
</tr>
<tr>
<td>Ciprofloxacin and gentamicin</td>
<td></td>
<td>17 (36)</td>
<td>11 (5)</td>
<td><.001</td>
</tr>
<tr>
<td>Ciprofloxacin and trimethoprim-sulphamethoxazole</td>
<td></td>
<td>17 (36)</td>
<td>22 (10)</td>
<td><.001</td>
</tr>
<tr>
<td>Ciprofloxacin, gentamicin, trimethoprim-sulphamethoxazole</td>
<td></td>
<td>9 (19)</td>
<td>8 (3)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviation: TRUS, transrectal ultrasound–guided.

TRUS biopsy and ST131 *E. coli*

- Post-TRUS *E. coli* bacteraemia accounted for 20% of all cases of CO-EC bacteraemia in males in our locale.
- High rates of resistance in post-biopsy isolates has practical implications for empiric therapy.
- The ST131 clone accounted for 40% of all *E. coli* isolates post-biopsy.

Clinical and molecular correlates of virulence in post-TRUS biopsy *E. coli* bacteremia

• Are post-TRUS *E. coli* isolates more virulent than “classic” urosepsis *E. coli* isolates from males?

• Why is ST131 *E. coli* particularly prevalent in the post-TRUS biopsy population?

• Are there any differences in clinical outcomes between patients with ST131 and non-ST131 post-TRUS bacteremia?
Clinical and molecular correlates of virulence in *Escherichia coli* causing bloodstream infection following transrectal ultrasound-guided (TRUS) prostate biopsy

Deborah A. Williamson¹⁻³*, Joshua T. Freeman², Stephen Porter⁴, Sally Roberts², Siouxsie Wiles¹, David L. Paterson⁵ and James R. Johnson⁴

¹Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; ²Department of Clinical Microbiology, Auckland District Health Board, Auckland, New Zealand; ³Institute of Environmental Science and Research, Wellington, New Zealand; ⁴Veterans Affairs Medical Center and University of Minnesota, Minneapolis, MN, USA; ⁵The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia

*Corresponding author. Department of Clinical Microbiology, Auckland District Health Board, Park Road, Grafton, Auckland, New Zealand. E-mail: dwilliamson@adhb.govt.nz
Molecular profiling of post-TRUS biopsy *E. coli* bloodstream isolates

- Multiplex PCR was used to detect 50 virulence associated genes in post-TRUS biopsy and spontaneous urosepsis isolates
- Virulence score assigned based on number of virulence genes detected (adjusting for multiple detection of certain operons)
- Phylogenetetic group and ST131 status determined
- Aggregate antimicrobial resistance score determined for each isolate
Phylogeny of post-TRUS biopsy vs. non-TRUS biopsy isolates

<table>
<thead>
<tr>
<th>Phylogenetic group or sequence type</th>
<th>Post-TRUS biopsy (n = 47)</th>
<th>Non-TRUS biopsy (n = 54)</th>
<th>P (^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A / B1 (^{b})</td>
<td>6 (13)</td>
<td>0</td>
<td>0.009</td>
</tr>
<tr>
<td>B2</td>
<td>25 (53)</td>
<td>48 (89)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>D</td>
<td>16 (34)</td>
<td>6 (11)</td>
<td>0.007</td>
</tr>
<tr>
<td>ST131 (^{c})</td>
<td>18 (38)</td>
<td>9 (17)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Abbreviations: TRUS, transrectal ultrasound-guided; ST131, sequence type 131

\(^{a}\) Fisher’s exact test

\(^{b}\) 5 isolates from group A and 1 from group B1

\(^{c}\) Proportion of post-TRUS biopsy vs. non-TRUS biopsy ST131 from group B2 isolates only: 18/25 (72%), vs. 9/49 (18%) (P < 0.001).
Virulence profile and antimicrobial resistance of TRUS vs. non-TRUS isolates

Differences in functional gene categories

Gene frequency per category

- Adhesins
- Toxins
- Protectins and invasins
- Siderophores
- Capsule-associated
- Miscellaneous

TRUS biopsy isolates
Non-TRUS biopsy isolates

$P < 0.001$

Functional virulence gene category

Clinical outcomes between ST131 and non-ST131 post-TRUS biopsy bacteremia

<table>
<thead>
<tr>
<th>Clinical characteristic</th>
<th>ST131</th>
<th>Non-ST131</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years ± SD</td>
<td>61.3 ± 8.5</td>
<td>61.4 ± 7.5</td>
<td>0.98</td>
</tr>
<tr>
<td>Charlson score, mean ± SD</td>
<td>0.50</td>
<td>0.52</td>
<td>0.92</td>
</tr>
<tr>
<td>Hospitalized in preceding year, no. (%)</td>
<td>0</td>
<td>3 (10)</td>
<td>0.27</td>
</tr>
<tr>
<td>Median time from biopsy to first positive blood culture, days</td>
<td>1.5</td>
<td>2</td>
<td>0.07</td>
</tr>
<tr>
<td>Median length of hospital stay, days</td>
<td>4.5</td>
<td>5.0</td>
<td>0.88</td>
</tr>
<tr>
<td>ICU admission, no. (%)</td>
<td>3 (17)</td>
<td>9 (31)</td>
<td>0.32</td>
</tr>
<tr>
<td>30-day mortality, no. (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Data are number of patients (%) unless otherwise stated. Abbreviations: TRUS, transrectal ultrasound-guided prostate; ICU, intensive care unit.
Insights into pathogenesis of post-TRUS sepsis

- Post-TRUS biopsy *E. coli* isolates were less virulent and more phylogenetically diverse than spontaneous urosepsis *E. coli* isolates
 - Likely reflects differential pathophysiology between two syndromes
- Post-TRUS biopsy isolates were more resistant than spontaneous urosepsis isolates and were more likely to be ST131
 - Probably reflects widespread use of FQ prophylaxis
- No difference in clinical outcomes between ST131 and non-ST131 post-TRUS biopsy bacteraemia
 - ST131 status alone is unlikely to be the primary determinant of the severity of post-TRUS biopsy *E. coli* bacteraemia
Pre-biopsy screening for resistant *E. coli*

- May allow tailored prophylaxis in patients who harbour resistant *E. coli* pre-biopsy
- Initial studies suggest that pre-biopsy screening may:
 - Reduce incidence of infectious complications \(^1,^2\)
 - Reduce overall cost of care \(^1\)
- Prior use of FQs strongly associated with pre-biopsy carriage of FQ-resistant isolate \(^2\)
 - 15/178 (8.4%) with FQ-susceptible *E. coli* vs. 20/52 (38.5%) with FQ-resistant *E. coli*

\(^1\) Taylor K et al. *J Urol* 2012; 187: 1275-79
\(^2\) Steensels D et al. *Clin Microbiol Infect* 2012; 575-81
Elderly NZ male with known low-grade prostatic carcinoma

‘Surveillance’ TRUS biopsy booked for early 2013

Returned from India (no healthcare contact)

Pre-biopsy screen demonstrated NDM-producing *Escherichia coli*

Should he have a biopsy??

Unanswered questions

• Clinical utility and cost-effectiveness of pre-biopsy screening
• FQ’s as adjunct vs. alternative prophylaxis
• Role of older agents e.g. fosfomycin; mecillinam
• Role of pre-biopsy antiseptics / enemas
• Utility of transperineal approach
• Overall risk vs. benefit of biopsy
Auckland District Health Board, New Zealand
• Dr Sally Roberts
• Dr Joshua Freeman
• Dr Jonathan Masters
• Department of Clinical Microbiology
• Department of Urology

Institute of Environmental Science and Research, Wellington, New Zealand
• Helen Heffernan
• Dr Kristin Dyet
• Antimicrobial Reference Laboratory

University of Auckland, New Zealand
• Dr Siouxsie Wiles
• Grant Mills (MSc student)
• Maurice Wilkins Centre for Biodiscovery

University of Queensland Centre for Clinical Research, Queensland, Australia
• Professor David Paterson
• Dr Hanna Sidjabat
• Dr Ben Rogers

University of Minnesota, United States
• Professor James Johnson
• Stephen Porter

Funding support: