The Changing Face of Small Animal Parasitic Zoonoses in Australia

Glen Coleman

Overview

- Changing prevalences of nematodes
- Changing usage of veterinary pharmaceuticals, and changes in efficacy

Changing *Toxocara* prevalences

- Ingestion of infective eggs; OLM, VLM

 Toxocara canis in Brisbane stray dogs

 - Mid 1970s;
 - 81% (26/32) pups,
 - 56% (28/50) adults (faecal floats)
 - 2003; 2.7% (3/110) (necropsies)
Changing *Toxocara* prevalences

- *Toxocara cati* in Brisbane refuge cats
 - 1979; 24.5% of 400 cats (necropsy)
 - 2005; <1% of 103 cats (faecal float)

Note: cats uncommonly receive monthly heartworm prophylaxis

Toxocara in Australia

Toxocara eggs in soil samples
- 1/180 soil samples in Melbourne parks (Carden et al., 2003)
- 0/266 sand samples Perth beaches & parks (Dunsmore et al., 1984)

Victorian annual incidence of ocular toxocariasis
- 1:1.6 million (Carden et al., 2003)

Hookworm prevalences – *Ancylostoma caninum*

- *Per cutaneous* penetration by infective larvae; pruritic skin papules, eosinophilic enteritis
 - 1973; 67% of 66 Brisbane dogs (necropsy)
 - 2004/05; ? Brisbane
 - 11.4% of 568 refuge dogs in across Australia
 - 10.2% of 274 Qld dogs (pcr)
Ancylostoma caninum is seasonal

![Graph showing seasonal influence of enteric infection by Ancylostoma caninum.](https://via.placeholder.com/150)

- Can establish patent infections in people, although clinical implications of this are unclear
 - Very common in regions of S E Asia, e.g. Cambodian rural village; 57% of people, 92% of dogs infected
- Likely moderately pathogenic in dogs
- Ancylostoma ceylanicum in 10/1391 canine faecal samples from across Australia
 - 4 samples from Broome, Brisbane, Sunshine Coast, Melbourne & Alice Springs
 - 0/1027 feline samples were positive

Hookworm prevalences – *Ancylostoma ceylanicum*

Hookworm prevalences – *Ancylostoma braziliense*

- Classic, and most likely cause, of cutaneous larva migrans
- Likely moderately pathogenic in dogs
- Reported from tropics 1920-1980s
 - Tropicaux savannah
 - Dogs and cats
- Not found in 1991 canine faecal samples from across Australia (2004/05)
 - Including 412 samples from tropical zones
 - 0/1027 feline samples were positive
Summary – GI parasite prevalences in Australian dogs

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Refuge dogs (n=590)</th>
<th>Vet clinic dogs (n=810)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giardia spp.</td>
<td>14.4 (11.6 - 17.2)</td>
<td>5.5 (3.9 – 7.1)</td>
</tr>
<tr>
<td>Hookworm</td>
<td>10.7 (8.2 - 13.2)</td>
<td>3.9 (2.6 – 5.2)</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>2.4 (1.2 – 3.6)</td>
<td>0.4 (0 – 0.8)</td>
</tr>
<tr>
<td>Cryptosporidium spp.</td>
<td>0.7 (0.03 – 1.4)</td>
<td>0.5 (0.01 – 1.0)</td>
</tr>
</tbody>
</table>

Faecal samples, pcr

Among Cryptosporidium, Cryptosporidium canis predominates

Low prevalence of zoonotic genotypes in Giardia isolates

Summary – GI parasite prevalences in Australian cats

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Refuge dogs (n=590)</th>
<th>Vet clinic dogs (n=810)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giardia spp.</td>
<td>2.6 (1.2 – 4.6)</td>
<td>1.4 (0.4 – 2.4)</td>
</tr>
<tr>
<td>Hookworm</td>
<td>2.9 (1.4 - 4.4)</td>
<td>0.2 (0 – 0.6)</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>4.9 (1.2 – 3.6)</td>
<td>1.7 (0.6 – 2.8)</td>
</tr>
<tr>
<td>Cryptosporidium spp.</td>
<td>3.5 (1.9 – 5.1)</td>
<td>1.0 (0.2 – 1.8)</td>
</tr>
<tr>
<td>Toxoplasma/Hammondia</td>
<td>0.2 (0 – 0.6)</td>
<td>0</td>
</tr>
</tbody>
</table>

Faecal samples, pcr

Among Cryptosporidium, Cryptosporidium felis predominates

Low prevalence of zoonotic genotypes in Giardia isolates

Summary

- Declining prevalence of *Toxocara* spp
- Declining prevalence of *Dirofilaria immitis*
- Likely declining prevalence of *Ancylostoma caninum*
- Need more research in to distribution of
 - *Ancylostoma ceylanicum*
 - *Ancylostoma braziliense*
Changing usage of parasiticides, and changes in efficacy

Parasites in refugia are not selected for resistance by drug treatment

- Refugia in dog and cat populations
 - Environmental stages of parasite not targeted by parasiticide
 - Diverse range of products applied to individual hosts
 - Arrested developmental stages that are not susceptible to drug treatment
- But....

Drug resistance in parasites of dogs & cats

Ancylostoma caninum
- Controlled (drench & slaughter) trial; 25.7% efficacy of pyrantel
- Brisbane pooled isolates

Ctenocephalides felis
- Resistance to OP, SP, carbamates is common
- Report of lufenuron resistance
- Several studies with decreased protective period of monthly products (but often laboratory flea strains)

Dirofilaria immitis (heartworm)
- Pockets of likely macrocyclic lactone-resistant strains of heartworm in USA
- No reports in Australia
Questions?